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Data Preparation 
 

Two import methods had to be used as the layout of the excel files changed after January to March of 

2021. The excel file names and sheet names had to be modified so that they were able to be opened 

in python. The older layout sheets were given a 0 in front of the file name and 1 for the latter. Some 

sheets were renamed P1a to follow the naming convention of the majority. The final manual 

adjustment was to insert 1 row below line 2 in the data of April to June 2021 because of the text 

difference at the top of the sheet. The newer layout sheets were simple to import but the older layout 

had extra blank columns and rows that were added to visually improve the excel file but made it 

difficult when importing it. Columns D and W, and rows 6 and 4 were blank and were removed in code. 

The total crime recorded column had to be relocated 1 row down as it was linked to row 4 which was 

to be dropped. Rows 1 to 3 and 62 onwards of the old format were ignored and so was rows 1 to 6 

and 63 onwards as they contained notes and headers. 

June 2019 to March 2020 does not contain a 3-month breakdown but only a rolling total to date. 

Therefore, it would be suitable to use the data from April 2020 onwards where that breakdown is 

available so insights into the data can be drawn for those periods which resulted in data for 24 months. 

The feature that was dropped was the area code as it related to the area name but doesn’t provide 

any meaningful information when compared against any of the features of the dataset and the area 

name is simpler to understand. The excel data contained bold columns that signify the category of 

crime which is the sum of its sub-categories. Such as violence against the person being the sum of 

homicide, violence with and without injury, stalking and harassment, and death or serious injury – 

unlawful driving. The other main categories are sexual offences, robbery, theft, criminal damages, 

drugs, possession of weapons, public orders, and miscellaneous crimes. Due to the quantity crimes, 

three sub-categorical crimes from two different categories were selected. These were: violence with 
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injury and stalking and harassment from violence against the person; and burglary from theft offences. 

The data contained immediate outliers which were identified to be the total crimes for England and 

Wales, city of London, and the Metropolitan police. Apart from the city of London, the datapoints 

were significantly larger than the other areas and the city of London contained null values, so those 

records were dropped. It was clear to see when identifying outliers that there were 2 possible divisions 

that could be made within the data as it contained the area names for electoral regions and counties. 

As the electoral regions are the sum of the counties, the county data will be carried forward and as 

there are more data points available than the regions. Based on the date range named in the excel 

file, a date-time column was added to each data frame in code before merging. The date took the last 

day of the specified month as the next file continued from the first of the month after. By adding a 

date column, it allows the data to be sorted and filtered once merged as there were no other 

identifiers that could have been used. The data was then cleaned after the z-score for each column 

had been calculated and scores which exceeded 3 in all columns were dropped. 

 

Dataset Analysis 
 

 

Figure 1. The boxplots represent the distribution of data of all counties under the regions of the North 

East, North west, Yorkshire and The Humber, East and West Midlands, East England, London, South 

East, South West and Wales. 

The resultant data after cleaning still appears to contain some outliers as they did not satisfy the 

condition to have a z-score of less than 3 in all columns. The boxplots for violence with injury shows 

that there is a skewness to the data. Most of the data will be found to the left of the median whereas 
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the tail of the distribution will be found in the higher crime numbers skewed to the right. Though this 

doesn’t necessarily suggest outliers, it does mean that most of the recorded crimes are lower and near 

the median and that areas of higher crime are less frequent. The boxplots for stalking and harassment 

also appear to have a skewness to the right, with the difference that the median is more centrally 

located between quartiles 1 and 3 which reflects that most of the data is equally partition either side 

of the median point. A possible observation is that there is seasonality with the crimes recorded. 

Studies have been conducted on checking seasonal oscillations with crime and anecdotal evidence 

suggests that there is a relationship. A study by (Linning, S. J., Andresen, M. A., & Brantingham, P. J. 

2017) into property crime found that there are more spikes in crime with areas with larger variations 

in the weather and higher crime rates during the summer months. Furthermore, a study by (Tiihonen 

et al. 2017) found that there was a there was a relationship between ambient temperatures and higher 

violent crime rates in Finland. Thus, the two studies suggest that there is a likelihood that crimes are 

affected by seasonal stimuli. 

However, it can be said that the first 12 months of the data is lower with respect to one year on. A 

potential reason for this was the introduction of Covid-19 lockdown restrictions. The first lockdown 

occurred on the 23rd of March 2020 and the 24th of February saw the living with covid plan being 

published (Sherrington 2022). Thus, the initial 12 months of the data could be considered in lockdown, 

and then post-lockdown for the remainder. Within one week of the first lockdown, crime figures had 

significantly declined (Halford et al. 2020, Stickle & Felson 2020) marking an overall reduction in crime 

and is noticeable in the violence with injury plot in figure 1. For the first month after lockdown, crime 

decreased by 25% (National Police Chiefs’ Council 2020). As lockdown restrictions were reduced, crime 

rates began to rise (Langton, Dixon & Farrell 2021), noticeable in the data for the January to March 

2021 periods onwards. 

 

 

Figure 2. Statistical measures for crimes recorded between April 2020 - March 2022. 

 

From these statistics, some observations can be made. It can be said that for a three-month period, a 

county has above or below average number of crimes if it is ± one standard deviation. So, for violence 

with injury crimes, a county is outside of the expected range if it has recorded more than 3474 crimes 

or less than 1188 crimes. The same applies to burglary where a county is receiving an irregular number 

of crimes if it is 1048.40 ± 560.64 and stalking and harassment if it receives 3122.41 ± 1641.74. 
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Figure 3. Covariance matrix of crimes against crimes in the dataset 

 

The top-left to bottom-right diagonal of the data is not relevant in this case as it looks at the covariance 

against an identical category. However, it does show that for the other possible combinations, each 

crime tends to move in the same direction. For example, it may suggest that if burglary were to 

increase, then stalking and harassment would likely move in the same direction. Though this may not 

always be the case. Thus, correlation must be considered. 

Hypothesis 
 

Hypothesis question one 

 

Did the Covid-19 lockdown restrictions effect the number of recorded violent crimes and burglaries? 

𝐻0: 

𝐻0: 𝜇1  ≈  𝜇2 

𝐻0: 𝜇3 ≈  𝜇4 

 

Assumption: Violence with injury means were similar, and burglary means were similar 

𝐻1: 

𝜇1 >  𝜇2,  𝜇3 <  𝜇4  

or 

𝜇1 <  𝜇2,  𝜇3 >  𝜇4 

 

Assumption one: Violent crime is to have decreased during lockdown while burglary increased 

Assumption: Violent crime is to have increased during lockdown while burglary decreased 

 

 

 



5 
 

𝐻2: 

𝜇1 >  𝜇2,  𝜇3 >  𝜇4 

or 

𝜇1 <  𝜇2,  𝜇3 <  𝜇4 

 

Assumption one: Violent crime and burglary increased 

Assumption two: Violent crime and burglary decreased 

𝐻3: 

𝜇1 ≈  𝜇2,  𝜇3 <  𝜇4  

or 

𝜇1 ≈  𝜇2,  𝜇3 >  𝜇4 

 

Assumption one: Violent crime is to have decreased during lockdown while burglary increased 

Assumption two: Violent crime is to have increased during lockdown while burglary decreased 

𝐻4: 

𝜇1 >  𝜇2,  𝜇3 ≈  𝜇4 

or 

𝜇1 <  𝜇2,  𝜇3 ≈  𝜇4 

 

Assumption one: Violent crime and burglary increased 

Assumption two: Violent crime and burglary decreased 

 

Where: 

𝜇1 = Mean violence with injury crime between April 2020 and March 2021 

𝜇2 = Mean violence with injury crime between April 2021 and March 2022 

𝜇3 = Mean burglary crime between April 2020 and March 2021 

𝜇4 = Mean burglary crime between April 2021 and March 2022 

 

Testing hypothesis one 
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Figure 4. T-test scores for time of April 2020 to March 2021 against April 2021 to March 2022. 

Greater or less denotes the one-sided test type. 

The results were produced using a one-sided test, testing whether the mean of the first sample was 

greater or less than the second sample. The t-test null hypotheses changes for each type conducted. 

When testing if lockdown crime mean was less than post-lockdown the null hypothesis would be 

𝑢𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛 >  𝑢𝑝𝑜𝑠𝑡−𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛 and alternate hypothesis would be 𝑢𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛 <  𝑢𝑝𝑜𝑠𝑡−𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛. If the 

p-value was not statistically significant, the null hypothesis cannot be rejected. However, the p-value 

for this was 0.0006 and is less than a 1% significant level (α = 0.01) which allows the null hypothesis to 

be rejected. This shows that there is very strong evidence that the mean crimes post-lockdown was 

higher than during lockdown for violence with injury crimes. 

When testing burglary, the p-value was not within the accepted range to be able to reject a null 

hypothesis for both test cases even if the there was a 10% significance which is high. However, the 

mean does appear to be slightly less going from 1067.75 to 1028.91 in the post-lockdown period. 

 

Figure 5. T-score and p-score of a two-tailed test for burglary. 

As the p-scores for one-tailed and two-tailed tests were more than 0.1, then there is no evidence to 

suggest that the means are significantly statistically different for burglary during lockdown and post-

lockdown. The assumed null hypothesis of a two tailed test if the p-value is not statistically significant 

is that 𝐻0: 𝑢1 =  𝑢2 but as the mean is slightly different, then it could be said that 𝐻0: 𝑢1 ≈  𝑢2. 

From the t-testing, the null hypothesis can be rejected as the violence with injury means were different 

and not roughly equal although the burglary crime means were almost equal. This satisfies the 

alternate condition of hypothesis four, where the mean of violence with injury was lower than that 

after restrictions were eased, and the burglary crime mean was roughly the same during and after 

lockdown restrictions. 

 

Hypothesis question two 

  

Is there a relationship between the amount of violence with injury crimes and stalking and 

harassment? 

𝐻0: 𝑝 =  0 

𝐻1 : 𝑝 ≠ 0 
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Where: 

𝑝 is the correlation coefficient. 

 

 

Figure 6. Spearman and Pearson results for violence with injury against stalking and harassment. 

Both Spearman and Pearson tests show a similar corelation with a marginal difference in the p-value. 

However, with a significance level of 1% (α = 0.01), the p-value is far below the threshold to reject the 

null hypothesis as there is sufficient evidence to claim a linear correlation as the correlation is 

significantly closer to one than zero. Thus, the alternate hypothesis can be accepted. 

Model Implementations 
 

Linear regression model 

 

 

Figure 7. Linear regression model trained on violence with injury against stalking and harassment. 
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The linear regression model was trained on 80% of the data and then tested on the remainder. 

Although it had a high RMSE score of 808.2, it had a coefficient of determination score of 0.72 and can 

potentially be used to find missing information in data if only one of the used axis were available. 

Although a linear regression model was used, it would also be functionally possible to use another 

model such as a gradient boosting tree or random forest regression. However, a linear regression 

model is much faster to compute than the other regression models which is why it was used in this 

case. Due to the previously established correlation, accuracy was not that crucial as the values tend 

to deviate more from the line of best fit the larger the x and y value became. 

 

Time-series forecasting model 

 

 

Figure 8. Sarimax model trained on the 8 data points available from the dataset. 

As there were only 8 time points in the data, it was unlikely that a time series forecast would be 

accurate. Plotting a sarimax with quartile seasonal separation shows that the data it learned from was 

not sufficient as it does not appear to follow any trend that exists from the previous data. The sarimax 

model was trained across all data unlike the usual case where a portion of the data, usually around 

20% is set aside to validate the model. 

 

Classification model 

 

A region column was applied to the data which was based on the county name. The new feature would 

introduce an aspect of categorical data that would allow for classification. Four classification models 

were implemented and tested to see which performed best. The features that each model learned 

from was all three of the crimes thus far. The goal was to be able to identify which electoral region a 

county may be from given the data for those three crimes. 
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Figure 9. A chart showing the number of mislabelled counties for each model. 

Model Comparisons 
 

Due to the limited time and categorical data, it was difficult to approach it with machine learning 

methods. For a classification model, there needed to be some categorical value for it to be able to find 

discrete values based on a criterion of features. An attempt was made to create a categorical attribute 

based on which region the county was in, but the results showed that all models used performed 

poorly. The best model labelled 26 correctly out of 61 which is not high enough to be considered 

reliable. For time-series forecasting, it will provide more accurate predictions the more data it has to 

learn on. This can be said for most machine learning algorithms. However, the data only had 8 points 

in time to learn from which was added during the data preparation. The SARIMAX model was able to 

learn from the data but was not able to make meaningful predictions on past or future time points. 

The most efficient and accurate model appeared to be the linear regression as it focused on existing 

features in the data and could use the vast number of records to aid in the training. For this dataset, 

it can be said that regression models will be more effective on the types of features than classification 

or time series forecasting. 
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Appendices 
 

# ================================================ 

# --- Data Manipulation --- 

import os 

import pandas as pd 

import numpy as np 

from datetime import datetime 

 

# ================================================ 

# --- Plotting --- 

import matplotlib.pyplot as plt 

import seaborn as sns 

from scipy import stats 

from tabulate import tabulate 

 

# ================================================ 

# --- Models --- 

 

from sklearn.linear_model import LinearRegression 

from sklearn import metrics 

from sklearn.model_selection import train_test_split 

from sklearn.naive_bayes import ComplementNB 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neural_network import MLPClassifier 

from sklearn.svm import SVC 

from pandas.tseries.offsets import DateOffset 

from statsmodels.tsa.statespace.sarimax import SARIMAX 

# ================================================ 

# --- Configs --- 

pd.set_option('display.max_rows', None) 

https://news.npcc.police.uk/releases/sustained-falls-in-recorded-crime-reported-throughout-lockdown
https://news.npcc.police.uk/releases/sustained-falls-in-recorded-crime-reported-throughout-lockdown
https://gds.blog.gov.uk/2022/07/25/2-years-of-covid-19-on-gov-uk/
https://doi.org/10.1007/s12103-020-09546-0
https://doi.org/10.1007/s12103-020-09546-0
https://doi.org/10.1038/s41598-017-06720-z
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pd.set_option('display.max_columns', None) 

pd.set_option('display.width', 1000) 

plt.rc('axes', axisbelow=True) 

file_path = os.path.dirname(__file__) 

os.chdir(file_path) 

data_file_path = "../Datasets/Excel" 

years = os.listdir(data_file_path) 

page_name = "Table P1a" 

# ================================================ 

 

def read_xlsx(file_name : str, format_type : int): 

    df = pd.read_excel(file_name, sheet_name=page_name, index_col=None, 

header=None) 

 

    if format_type == 0: 

        # --- Rows and Columns to drop --- 

        # Row numbers should be reduced by one to account for -1 offset in 

python 

        # Rows: 1,2,3,4,6,63,64,65,66,67,68,69,70,71,72,73 

        # Columns: D (4), W (24) 

        df = df.iloc[:61, :] 

        row_drops = [0, 1, 2, 3, 5] 

        col_drops = [3, 22] 

        # Row 4, col 2 is 1 row too high so it will be dropped down 1 row 

        # and then row 0 removed as the rest is NaN values. 

        df.iat[4,2] = df.iat[3,2] 

        df.drop(index=row_drops, axis=0, inplace=True) 

        df.drop(columns=col_drops, axis=1, inplace=True) 

        df.columns = df.iloc[0, :] 

        df.reset_index(drop=True, inplace=True) 

        df.drop(index=0, axis=0, inplace=True) 

 

    elif format_type == 1: 

        # --- Rows and Columns to drop --- 

        # Newer format does not need any column drops 

        # Headers are on row 7 so all rows of the dataframe up to 6 will be 

dropped 

        df = df.iloc[:62, :] 

        row_drops = [0, 1, 2, 3, 4, 5] 

        df.drop(index=row_drops, axis=0, inplace=True) 

        df.reset_index(drop=True, inplace=True) 

        df.columns = df.iloc[0, :] 

        df.drop(index=0, axis=0, inplace=True) 

 

    return df 

 

def remove_num_from_string(input_string : str, remove_commas : bool): 

    formatted_list = [] 
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    capitalise_next = False 

    delete_next = False 

    for letter in input_string: 

        if letter == '[': 

            break 

 

        if letter.isdigit() == False and remove_commas == False and 

delete_next == False: 

            if letter != ' ': 

                if letter == '\\': 

                    delete_next = True 

 

                else:  

                    if capitalise_next: 

                        formatted_list.append(letter.upper()) 

                        capitalise_next = False 

                        delete_next = False 

 

                    else: formatted_list.append(letter) 

 

            elif letter == ' ': 

                capitalise_next = True 

 

        elif letter.isdigit() == False and remove_commas == True and letter != 

',': 

            formatted_list.append(letter) 

 

    return ''.join(formatted_list) 

 

def convert_file_to_csv_format(file_path : str, format_type : int): 

    df = read_xlsx(file_path, format_type) 

    # Drop the numbers from the header names 

    for i in range(0, len(df.columns)): 

        df.rename(columns={df.columns[i] : 

remove_num_from_string(str(df.columns[i]), False)}, inplace=True) 

 

    df.columns.name = None 

 

    return df 

 

def transform_data(dataframe_input : pd.DataFrame, filter : bool) -> 

pd.DataFrame: 

 

    df = dataframe_input 

    if filter: 

        df = dataframe_input.filter(items=features_to_use) 

 

    for i in range(len(df[df.columns[0]])): 
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        df[df.columns[0]].iloc[i] = 

remove_num_from_string(df[df.columns[0]].iloc[i], remove_commas=False) 

 

    return df 

 

def get_data_dataframe_list(filter : bool) -> list: 

    police_data_dataframe_list = [] 

    date_index = 0 

    for year in years: 

        for excel_file in os.listdir(data_file_path + "/" + year): 

            # First Character of file name signifies the format 

            format_type = int(excel_file[0]) 

            # Returns a df from csv format and adds the df location to a list 

for 

            # accessing later on. 

            temp_df = convert_file_to_csv_format(data_file_path + "/" + year + 

"/" + excel_file, format_type) 

            temp_df.drop(columns='AreaCode', inplace=True) 

            temp_df = transform_data(temp_df, filter) 

            temp_df.set_index(temp_df.columns[0], inplace=True) 

            for column in temp_df.columns: 

                temp_df[column] = temp_df[column].astype(dtype='float') 

 

            temp_df["Date"] = 

pd.to_datetime(datetime.strptime(date_range[date_index], "%d/%m/%Y"), 

format='%d%m%Y') 

            temp_df["Date"] = temp_df['Date'].dt.date 

            police_data_dataframe_list.append(temp_df) 

            date_index += 1 

 

     

    return police_data_dataframe_list 

             

features_to_use = ['AreaName', 'ViolenceWithInjury', 'Burglary', 

'StalkingAndHarassment'] 

     

date_range = ['30/06/2020', '30/09/2020', '31/12/2020', '31/03/2021',  

    '30/06/2021', '30/09/2021', '31/12/2021', '31/03/2022'] 

 

date_range_labels = ['apr-jun-2020', 'jul-sep-2020', 'oct-dec-2020', 'jan-mar-

2021',  

    'apr-jun-2021', 'jul-sep-2021', 'oct-dec-2021', 'jan-mar-2022'] 

 

 

def get_joined_data(frame_list : list) -> pd.DataFrame: 

    joined_dfs = pd.DataFrame() 

    for df in frame_list: 
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        joined_dfs = pd.concat([df, joined_dfs], ignore_index=False) 

 

    return joined_dfs 

 

def get_feature_stats(data_frame : pd.DataFrame) -> pd.DataFrame: 

    mean = [np.mean(data_frame[feature]) for feature in features_to_use[1:]] 

    median = [np.median(data_frame[feature]) for feature in 

features_to_use[1:]] 

    std = [np.std(data_frame[feature]) for feature in features_to_use[1:]] 

    var = [np.var(data_frame[feature]) for feature in features_to_use[1:]] 

    results = pd.DataFrame({'crime' : [split_capitals(feature) for feature in 

features_to_use[1:]], 'mean' : mean,  

        'median' : median, 'std' : std, 'var' : var}) 

 

    results.set_index('crime', drop=True, inplace=True) 

    return results 

 

def get_covariance_stats(data_frame : pd.DataFrame) -> pd.DataFrame: 

    covar_df = pd.DataFrame(columns=[split_capitals(col) for col in 

data_frame.columns], index=[split_capitals(col) for col in 

data_frame.columns]) 

    covar_df.index.name = 'Covariance Matrix' 

    for col in range(len(covar_df.columns)): 

        for row in range(len(covar_df.index)): 

            covar_df.iat[row, col] = 

float(np.cov(data_frame[data_frame.columns[col]], 

data_frame[data_frame.columns[row]])[0, 1]) 

 

    return covar_df 

 

areas_to_drop = ["ENGLANDANDWALES", "ENGLAND", "London,CityOf", "WALES", 

"MetropolitanPolice"] 

regions = ["NorthEast", "NorthWest", "YorkshireAndTheHumber", "EastMidlands", 

"WestMidlands",  

    "East", "London", "SouthEast", "SouthWest"] 

 

def split_capitals(string: str) -> str: 

    new_string = [] 

    for i in range(0, len(string)): 

        if i == 0: 

            new_string.append(string[i]) 

 

        else: 

            if i == len(string) - 1: 

                new_string.append(string[i]) 

                return ''.join(new_string) 
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            elif string[i].islower() == True and string[i+1].isupper() == 

True: 

                new_string.append(string[i]) 

                new_string.append(" ") 

                new_string.append(string[i+1]) 

             

            elif string[i].islower() == True and string[i+1].isupper() == 

False: 

                new_string.append(string[i]) 

 

def boxplot_feature_report(joined_df : pd.DataFrame): 

 

    fig, axes = plt.subplots(1, 3, sharey=False) 

    fig.set_figwidth(12) 

    fig.set_figheight(8) 

    joined_df = joined_df.sort_values(by=['Date'], ascending=True) 

    col = 0 

    for crime in features_to_use[1:]: 

        axes[col].grid(axis='y') 

        # First Row 

        sns.boxplot(data=joined_df, x='Date', y=crime, orient='v', 

dodge=False, ax=axes[col]) 

        left, right = axes[col].get_xlim() 

        bounds = [left, right] 

        sns.lineplot(x=bounds, y=np.mean(joined_df[crime]), color='black', 

linestyle='dashed', lw=1, ax=axes[col]) 

        axes[col].set_xticks(ticks=np.arange(0, len(date_range_labels))) 

        axes[col].set_xticklabels(labels=date_range_labels, rotation=45, 

ha='right') 

        axes[col].set_title(f"{split_capitals(crime)} Statistics", fontsize=9) 

        axes[col].set_ylabel("Recorded Crimes") 

 

        bottom, top = axes[col].get_ylim() 

        axes[col].annotate(xy=(0.2, bottom + 75), text='Mean line: 

{0}'.format(round(np.mean(joined_df[crime]), 2)), horizontalalignment='left', 

            fontsize=9, weight='semibold') 

 

        col += 1 

 

    fig.suptitle("County boxplots with mean line") 

    fig.tight_layout() 

    #plt.show() 

 

def remove_outliers(dataframe : pd.DataFrame) -> pd.DataFrame: 

    return 

dataframe.iloc[(np.abs(stats.zscore(dataframe[features_to_use[1:]])) < 

3).all(axis=1)] 
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def t_test(data_frame : pd.DataFrame, columns : list): 

 

    t_score = [] 

    p_score = [] 

    means = [] 

 

    conditions = ['greater', 'less'] 

 

    date_list_lockdown = [pd.to_datetime('2020-06-30').date(), 

pd.to_datetime('2020-09-30').date(), pd.to_datetime('2020-12-31').date(), 

pd.to_datetime('2021-03-31').date()] 

    date_list_lifted = [pd.to_datetime('2021-06-30').date(), 

pd.to_datetime('2021-09-30').date(), pd.to_datetime('2021-12-31').date(), 

pd.to_datetime('2022-03-31').date()] 

    for column in columns: 

        t_score_per_condition = [] 

        p_score_per_condition = [] 

        data_lockdown = 

data_frame[column].loc[data_frame['Date'].isin(date_list_lockdown)].tolist() 

        #print(len(data_lockdown)) 

        data_lifted = 

data_frame[column].loc[data_frame['Date'].isin(date_list_lifted)].tolist() 

        #print(len(data_lifted)) 

        means.append([round(np.mean(data_lockdown), 2), 

round(np.mean(data_lifted), 2)]) 

        #print(data_lifted) 

        for measure in conditions: 

            scores = stats.ttest_ind(data_lockdown, data_lifted, 

alternative=measure) 

            t_statistic, p_val = scores 

            t_score_per_condition.append(round(t_statistic, 4)) 

            p_score_per_condition.append(round(p_val, 4)) 

 

        t_score.append(t_score_per_condition) 

        p_score.append(p_score_per_condition) 

 

    results = pd.DataFrame({'T-Scores : (Greater, Less)' : t_score, 'P-Scores 

: (Greater, Less)' : p_score, 'Means : (During, Post)' : means}, 

index=[split_capitals(column) for column in columns]) 

    results.index.name = 'Crimes' 

    return results 

     

def two_tail_burglary(data_frame : pd.DataFrame) -> pd.DataFrame: 

    t_score = [] 

    p_score = [] 
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    date_list_lockdown = [pd.to_datetime('2020-06-30').date(), 

pd.to_datetime('2020-09-30').date(), pd.to_datetime('2020-12-31').date(), 

pd.to_datetime('2021-03-31').date()] 

    date_list_lifted = [pd.to_datetime('2021-06-30').date(), 

pd.to_datetime('2021-09-30').date(), pd.to_datetime('2021-12-31').date(), 

pd.to_datetime('2022-03-31').date()] 

    data_lockdown = 

data_frame['Burglary'].loc[data_frame['Date'].isin(date_list_lockdown)].tolist

() 

    data_lifted = 

data_frame['Burglary'].loc[data_frame['Date'].isin(date_list_lifted)].tolist() 

    scores = stats.ttest_ind(data_lockdown, data_lifted, alternative='two-

sided') 

    t_statistic, p_val = scores 

    t_score.append(round(t_statistic, 4)) 

    p_score.append(round(p_val, 4)) 

    results = pd.DataFrame({'T-Score' : t_score, 'P-Score' : p_score}, 

index=['Burglary']) 

    results.index.name = 'Crime' 

    return results 

 

def corr_test(data_frame : pd.DataFrame, col_1 : str, col_2 : str) -> 

pd.DataFrame: 

    spear_cor, spear_pval = stats.spearmanr(a=data_frame[col_1], 

b=data_frame[col_2]) 

    pear_cor, pear_pval = stats.pearsonr(data_frame[col_1], data_frame[col_2]) 

 

    result = pd.DataFrame({'Correlation':[spear_cor, pear_cor], 'P-value' : 

[spear_pval, pear_pval]}, index=['Spearman', 'Pearson']) 

    result.index.name = 'Method' 

    return result 

 

class lin_regresser: 

    def __init__(self, data : pd.DataFrame, col_1 : str, col_2 : str) -> None: 

        self.model = LinearRegression() 

        self.x = np.array(data[col_1].tolist()).reshape(-1, 1) 

        self.y = np.array(data[col_2].tolist()).reshape(-1, 1) 

        self.x_train, self.x_test, self.y_train, self.y_test = 

train_test_split(self.x, self.y, test_size=0.2, random_state=42) 

        self.y_pred = [] 

        None 

 

    def train(self): 

        self.model.fit(self.x_train, self.y_train) 

        self.y_pred = self.model.predict(self.x_test) 

        None 

 

    def get_preds(self, x_values : list) -> float: 
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        x_values = np.array(x_values).reshape(-1, 1) 

        res = np.array(self.model.predict(x_values)).flatten() 

        return res 

         

    def show_train_result(self): 

        print(f"Y intercept: {self.model.intercept_}") 

        print(f"Coefficient of Determination: {self.model.score(self.x_train, 

self.y_train)}") 

        print(f"Mean Absolute Error: {metrics.mean_absolute_error(self.y_test, 

self.y_pred)}")   

        print(f"Mean Squared Error: {metrics.mean_squared_error(self.y_test, 

self.y_pred)}")   

        print(f"Root Mean Squared Error: 

{np.sqrt(metrics.mean_squared_error(self.y_test, self.y_pred))}") 

        None 

 

    def show_training_plot(self): 

        fig, axes = plt.subplots(1, 2, sharex=True, sharey=True) 

         

        axes[0].grid(True) 

        sns.scatterplot(x=self.x_test.flatten(), y=self.y_test.flatten(), 

ax=axes[0]) 

        sns.lineplot(x=self.x_test.flatten(), y=self.y_pred.flatten(), 

color='red', ax=axes[0]) 

        axes[0].set_title("Prediction slope against test data") 

        axes[0].set_xlabel("Violence with injury") 

        axes[0].set_ylabel("Stalking and harassment") 

         

        axes[1].grid(True) 

        sns.scatterplot(x=self.x.flatten(), y=self.y.flatten(), ax=axes[1]) 

        sns.lineplot(x=self.x_test.flatten(), y=self.y_pred.flatten(), 

color='red', ax=axes[1]) 

        axes[1].set_title("Prediction slope against actual data") 

        axes[1].set_xlabel("Violence with injury") 

        axes[1].set_ylabel("Stalking and harassment") 

 

        fig.set_figwidth(10) 

        fig.set_figheight(6) 

        fig.suptitle("Linear Regression Model") 

        fig.tight_layout() 

         

 

region_mapper = pd.DataFrame({ 

    "NorthEast" : ['Cleveland', 'Durham', 'Northumbria', '', '', ''], 

    "NorthWest" : ['Cheshire', 'Cumbria', 'Greater', 'Manchester', 

'Lancashire', 'Merseyside'],  
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    "YorkshireAndTheHumber" : ['Humberside', 'NorthYorkshire', 

'SouthYorkshire', 'WestYorkshire', '', ''],  

    "EastMidlands" : ['Derbyshire', 'Leicestershire', 'Lincolnshire', 

'Northamptonshire', 'Nottinghamshire', ''],  

    "WestMidlands" : ['Staffordshire', 'Warwickshire', 'WestMercia', 

'WestMidlands', '', ''],  

    "East" : ['Bedfordshire', 'Cambridgeshire', 'Essex', 'Hertfordshire', 

'Norfolk', 'Suffolk'],  

    "London" : ['London', '', '', '', '', ''],  

    "SouthEast" : ['Hampshire', 'Kent', 'Surrey', 'Sussex', 'ThamesValley', 

''], 

    "SouthWest" : ['AvonAndSomerset', 'DevonAndCornwall', 'Dorset', 

'Gloucestershire', 'Wiltshire', ''], 

    "Wales" : ['Dyfed-Powys', 'Gwent', 'NorthWales', 'SouthWales', '', ''] 

    }) 

 

def get_region_label(county : str) -> str: 

    for column in region_mapper.columns: 

        for i in range(0,6): 

            if county == region_mapper[column].iat[i]: 

                return column 

 

    return None 

 

def apply_region_label(data_frame : pd.DataFrame) -> pd.DataFrame: 

    data_frame['Region'] = [get_region_label(county) for county in 

data_frame.index] 

    return data_frame 

 

class region_svc_classifier: 

    def __init__(self, data : pd.DataFrame, target_col : str) -> None: 

        self.model = SVC() 

        self.features = data[[column for column in data.columns if column not 

in [target_col, 'Date']]] 

        self.target = data[target_col] 

        self.x_train, self.x_test, self.y_train, self.y_test = 

train_test_split(self.features, self.target, test_size=0.2, random_state=42) 

        self.y_pred = [] 

        None 

 

    def train(self): 

        self.model.fit(self.x_train, self.y_train) 

        self.y_pred = self.model.predict(self.x_test) 

        return (self.y_test != self.y_pred).sum() # returns quantity of 

mislabeled points 

 

    def get_preds(self, x_values : list) -> float: 
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        x_values = np.array(x_values).reshape(-1, 1) 

        res = np.array(self.model.predict(x_values)).flatten() 

        return res 

         

class region_mlp_classifier: 

    def __init__(self, data : pd.DataFrame, target_col : str) -> None: 

        self.model = MLPClassifier() 

        self.features = data[[column for column in data.columns if column not 

in [target_col, 'Date']]] 

        self.target = data[target_col] 

        self.x_train, self.x_test, self.y_train, self.y_test = 

train_test_split(self.features, self.target, test_size=0.2, random_state=42) 

        self.y_pred = [] 

        None 

 

    def train(self): 

        self.model.fit(self.x_train, self.y_train) 

        self.y_pred = self.model.predict(self.x_test) 

        return (self.y_test != self.y_pred).sum() # returns quantity of 

mislabeled points 

 

    def get_preds(self, x_values : list) -> float: 

 

        x_values = np.array(x_values).reshape(-1, 1) 

        res = np.array(self.model.predict(x_values)).flatten() 

        return res 

 

class region_tree_classifier: 

    def __init__(self, data : pd.DataFrame, target_col : str) -> None: 

        self.model = DecisionTreeClassifier(max_depth=30) 

        self.features = data[[column for column in data.columns if column not 

in [target_col, 'Date']]] 

        self.target = data[target_col] 

        self.x_train, self.x_test, self.y_train, self.y_test = 

train_test_split(self.features, self.target, test_size=0.2, random_state=42) 

        self.y_pred = [] 

        None 

 

    def train(self): 

        self.model.fit(self.x_train, self.y_train) 

        self.y_pred = self.model.predict(self.x_test) 

        return (self.y_test != self.y_pred).sum() # returns quantity of 

mislabeled points 

 

    def get_preds(self, x_values : list) -> float: 

 

        x_values = np.array(x_values).reshape(-1, 1) 

        res = np.array(self.model.predict(x_values)).flatten() 
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        return res 

 

class region_comp_classifier: 

    def __init__(self, data : pd.DataFrame, target_col : str) -> None: 

        self.model = ComplementNB() 

        self.features = data[[column for column in data.columns if column not 

in [target_col, 'Date']]] 

        self.target = data[target_col] 

        self.x_train, self.x_test, self.y_train, self.y_test = 

train_test_split(self.features, self.target, test_size=0.2, random_state=42) 

        self.y_pred = [] 

        None 

 

    def train(self): 

        self.model.fit(self.x_train, self.y_train) 

        self.y_pred = self.model.predict(self.x_test) 

        return (self.y_test != self.y_pred).sum() # returns quantity of 

mislabeled points 

 

    def get_preds(self, x_values : list) -> float: 

 

        x_values = np.array(x_values).reshape(-1, 1) 

        res = np.array(self.model.predict(x_values)).flatten() 

        return res 

 

def plot_classifier_results(data : pd.DataFrame): 

    svc_class = region_svc_classifier(data, 'Region') 

    svc_errors = svc_class.train() 

    mlp_class = region_mlp_classifier(data, 'Region') 

    mlp_errors = mlp_class.train() 

    tree_class = region_tree_classifier(data, 'Region') 

    tree_errors = tree_class.train() 

    comp_class = region_comp_classifier(data, 'Region') 

    comp_errors = comp_class.train() 

     

    results = pd.DataFrame({'Mislabeled Counties out of 61' : [svc_errors, 

mlp_errors, tree_errors, comp_errors]}, index=['SVC', 'MLPClassifier', 

'DecisionTree', 'ComplementNB']) 

    results.index.name = 'Model' 

    print(tabulate(results, headers='keys', tablefmt='fancy_grid')) 

 

def time_series_plot(data : pd.DataFrame, columns : list): 

 

    fig, ax = plt.subplots(1, 3) 

    crime_sum = data.groupby('Date').sum().reset_index() 

    crime_sum.set_index('Date', inplace=True, drop=True) 

 

    ax_index = 0 



22 
 

    for crime in columns: 

 

        sari_mod = SARIMAX(crime_sum[crime], seasonal_order=(0, 0, 0, 

4),order=(1,0,0)) 

        sari_res = sari_mod.fit(disp=False, maxiter=250) 

        future_time_periods = [crime_sum.index[-1] + DateOffset(months=x) for 

x in range(0, 13, 1)] 

        sari_predictions = np.array([sari_res.predict(time) for time in 

future_time_periods]).flatten() 

        ax[ax_index].plot(crime_sum[crime], marker = 'o', linestyle='dashed') 

        sns.lineplot(x=future_time_periods, y=sari_predictions, 

ax=ax[ax_index]) 

        ax[ax_index].set_xlabel("Date", fontsize = 6) 

        ax[ax_index].set_ylabel("Sum of counties crime", fontsize = 6) 

        ax[ax_index].set_title(f"Time series of total crime for 

{split_capitals(crime)}", fontsize = 6) 

        ax[ax_index].tick_params(labelrotation = 70, axis='x') 

        ax_index+=1 

     

    fig.set_figwidth(12) 

    fig.tight_layout() 

    #plt.show() 

 

def main(): 

     

    data_list = get_data_dataframe_list(filter=True) 

    df = get_joined_data(data_list) 

    df = data_list[0] 

    counties = [df.index[i] for i in range(0, len(df.index)) if df.index[i] 

not in regions] 

 

    for area in areas_to_drop: 

        counties.remove(area) 

 

    all_data = get_joined_data(data_list) # Join data from data list 

    county_data = all_data.loc[counties] 

    county_data = remove_outliers(county_data) 

    boxplot_feature_report(county_data) 

     

    time_series_plot(county_data, features_to_use[1:]) 

 

    results = corr_test(county_data, features_to_use[1], features_to_use[-1]) 

    print(tabulate(results, headers='keys', tablefmt='fancy_grid')) 

     

    stat_df = get_feature_stats(county_data) 

     

    print(tabulate(stat_df, headers='keys', tablefmt='fancy_grid')) 
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    print(tabulate(get_covariance_stats(county_data[[col for col in 

county_data.columns if col != 'Date']]), headers='keys', 

tablefmt='fancy_grid')) 

 

    results = t_test(data_frame=county_data, columns=['ViolenceWithInjury', 

'Burglary']) 

    print(tabulate(results, headers='keys', tablefmt='fancy_grid')) 

 

    burglary_data = two_tail_burglary(county_data) 

    print(tabulate(burglary_data, headers='keys', tablefmt='fancy_grid')) 

     

    lin_reg = lin_regresser(county_data, col_1='ViolenceWithInjury', 

col_2='StalkingAndHarassment') 

    lin_reg.train() 

    lin_reg.show_training_plot() 

 

    county_data = apply_region_label(county_data) 

    plot_classifier_results(county_data) 

 

    plt.show() 

 

if __name__ == "__main__": 

    main() 
 


